Comunicado COVID-19

Seguimos trabajando y atendiendo a alumnos actuales y futuros

Ampliar información
Master en Analítica Web y Big Data
practicas
Prácticas Garantizadas
convocatoria
Convocatoria Abierta
modalidad
Online
duracion
1500 H
precio
1695 EUR
practicas
Prácticas
Garantizadas
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
Online
Duración de las acciones formativas de INESEM
Duración
1500 H
Precio de las acciones formativas de INESEM
Precio
1695EUR
¡Puedes fraccionar tus pagos cómodamente!

Cuota

1695 €
200 €/primer mes
Resto de plazos: 1495 €/mes

Presentación

Con este Master en Analítica Web y Big Data  obtendrás la formación necesaria para realizar recopilación y análisis de datos masivos gracias al Big Data y dominar herramientas de analítica web, tales como Google Analytics, Google Adwords, Google Tag Manager y Google Data Studio, con las que podrás planificar, ejecutar y evaluar estrategias, SEO, SEM y CRO  en entornos de e-commerce. Además, serás capaz de llevar a cabo análisis más profundos de todos los datos obtenidos gracias al uso de BigQuery, Python y R.

plan de estudios

Para qué te prepara

Con Master Analítica Web y Big Data  obtendrás la formación necesaria para realizar recopilación y análisis de datos masivos mediante Data Mining y dominar herramientas de analítica web, con las que podrás planificar, ejecutar y evaluar estrategias, SEO, SEM y CRO  en entornos de e-commerce. Serás capaz de lograr con éxito labores de fidelización de clientes aplicando los principios del Big Data, la minería de datos y la analítica web.


Objetivos
  • Conocer e identificar las distintas fases de un proyecto de Big Data.
  • Diseñar e  Implementar estrategias de marketing digital en base al Big Data.
  • Aplicar técnicas de Data Mining mediante análisis cuantitativo y cualitativo de la  información.
  • Conocer softwares  especializados en minería de datos.
  • Asimilar los principios  de la analítica web y su aplicación mediante Google Analytics y otras  alternativas.
  • Aplicar el concepto de Inteligencia Competitiva.
  • Conocer y comprender las principales métricas para el análisis web.
  • Optimizar los entornos de e-commerce, mediante  estrategias SEO e Inbound Marketing.

A quién va dirigido

El Master Analítica Web y Big Data está dirigido a los profesionales de todos los niveles que  quieran adquirir o afianzar conocimientos en torno a la analítica web, minería de datos, y posterior análisis, de cara a mejorar las estrategias empresariales y de marketing. Se trata de una acción formativa idónea para ampliar oportunidades profesionales en un ámbito  en auge, como es el Big Data.


Salidas Profesionales

Con el Master Analítica Web y Big Data despuntarás entre los profesionales del sector, pudiendo desempeñar puestos de responsabilidad diferenciados como arquitecto de soluciones Big Data, analista web, analista de datos, gestor de infraestructuras Big Data, responsable de seguridad o privacidad Big Data, desarrollador de sistemas Big Data o auditor de datos web Big Data.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Aproximación al concepto de DataMart
  2. Procesos de extracción, transformación y carga de datos (ETL)
  3. Data Warehouse
  4. Herramientas de Explotación
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. Business Intelligence en Excel
  2. Herramienta PowerBI
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Importancia del SEO
  2. Funcionamiento de los buscadores
  3. Google: algoritmos y actualizaciones
  4. Cómo salir de una penalización en Google
  5. Estrategia SEO
  1. Introducción al SEM
  2. Principales conceptos de SEM
  3. Sistema de pujas y calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios de calidad
  6. Indicadores clave de rendimiento en SEM
  1. Qué es un CMS
  2. Ventajas e inconvenientes de los CMS
  3. Wordpress y Woocommerce
  4. Prestashop y Magento
  1. Tipos de redes sociales
  2. La importancia actual del social media
  3. Prosumer
  4. Contenido de valor
  5. Marketing viral
  6. La figura del Community Manager
  7. Social Media Plan
  8. Reputación Online
  1. Primero pasos con Facebook
  2. Facebook para empresas
  3. Configuración de la Fanpage
  4. Configuración de mensajes: Facebook Messenger
  5. Tipo de publicaciones
  6. Creación de eventos
  7. Facebook Marketplace
  8. Administración de la página
  9. Facebook Insights
  1. Introducción a Instagram
  2. Instagram para empresas
  3. Creación de contenido
  4. Uso de Hashtags
  5. Instagram Stories
  6. Herramientas creativas
  7. Colaboración con influencers
  8. Principales estadísticas
  1. Introducción a Twitter
  2. Elementos básicos de Twitter
  3. Twitter para empresas
  4. Servicio de atención al cliente a través de Twitter
  5. Contenidos
  6. Uso de Hashtags y Trending Topic
  7. Twitter Analytics
  8. TweetDeck
  9. Audiense
  10. Hootsuite
  11. Bitly
  1. Introducción a LinkedIn
  2. LinkedIn para empresas
  3. Creación de perfil y optimización
  4. Grupos
  5. SEO para LinkedIn
  6. Analítica en LinkedIn
  7. LinkedIn Recruiter
  1. Introducción a Youtube
  2. Vídeo Marketing
  3. Crear una canal de empresa
  4. Optimización del canal
  5. Creación de contenidos
  6. Gestión de comentarios
  7. Youtube Analytics
  8. Youtube vs Vimeo
  9. Keyword Tool
  10. Youtube Trends
  1. Introducción a Facebook Ads
  2. Tipos de Campañas y objetivos publicitarios
  3. Segmentación: públicos
  4. Presupuesto
  5. Formatos de anuncios
  6. Ubicaciones
  7. Administrador de anuncios
  8. Seguimiento y optimización de anuncios
  9. Pixel de Facebook
  1. Introducción a Instagram Ads
  2. Objetivos publicitarios
  3. Tipos de anuncios
  4. Administrador de anuncios
  5. Presupuesto
  6. Instagram Partners
  7. Segmentación
  1. Objetivos publicitarios
  2. Audiencias en Twitter
  3. Tipos de anuncios
  4. Administrador de anuncios
  5. Creación de campañas y optimización
  6. Twitter Cards
  7. Instalación código de seguimiento
  8. Listas de remarketing
  1. Introducción a LinkedIn Ads
  2. Formatos de anuncios
  3. Objetivos publicitarios
  4. Creación de campañas
  5. Segmentación
  6. Presupuesto
  7. Seguimiento y medición de resultados
  1. Ventajas de la publicidad en Youtube
  2. Youtube y Google Adwords
  3. Tipos de anuncios en Youtube
  4. Campaña publicitarias en Youtube con Google Adwords
  5. Creación de anuncios desde Youtube
  1. Introducción
  2. La Analítica Web. Un reto cultural
  3. ¿Qué puede hacer la analítica web por ti o tu empresa?
  4. Glosario de Analítica Web
  1. La analítica web en la actualidad
  2. Definiendo la analítica web
  3. El salto a la analítica web moderna
  1. Identificar los factores críticos
  2. Otros factores que convienen medir
  3. Las macro y microconversiones
  4. Medir el valor económico
  5. Sitios sin comercio. Valores a medir
  6. Medición de sitios B2B
  1. Introducción
  2. La usabilidad Web
  3. Pruebas Online y a Distancia
  4. Las encuestas
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico. Cálculo de KPI con Excel
  1. Introducción
  2. Recopilar datos de Inteligencia Competitiva
  3. Análisis del tráfico de sitios web
  4. Búsquedas
  1. Introducción
  2. La nueva web social y como medir datos
  3. Las aplicaciones
  4. Analizar el comportamiento desde el móvil
  5. Analizar el rendimiento de los vídeos
  1. Análisis de Blogs
  2. Coste y beneficios de escribir en un blog
  3. Nuestro impacto en Twitter
  4. Métricas para Twitter
  1. La calidad de los datos
  2. Obtener datos válidos
  3. ¿En qué basarnos para la toma de decisiones?
  4. Beneficios de análisis multicanal
  1. Segmentación en base al comportamiento
  2. Predicción y minería de datos
  3. Rumbo a la analítica inteligente
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Ventajas de la publicidad online
  2. ¿Qué es Google Ads?
  3. Fundamentos de Google Ads
  4. Crear una cuenta en Google Ads
  5. Campañas, grupos de anuncios y palabras clave
  6. Planificador de palabras clave
  7. Adwords Editor
  1. Funcionamiento
  2. Configuración campaña
  3. Anuncios
  4. Pujas y presupuestos
  5. Administración, medición y supervisión de campañas
  6. Optimización
  1. Introducción
  2. Configuración campaña
  3. Anuncios
  4. Audiencias, segmentación y remarketing
  5. Medición y optimización
  1. Ventajas de la publicidad mobile
  2. Pujas y segmentación
  3. Anuncios
  4. Medición
  1. Google Merchant Center
  2. Campañas de shopping
  1. Introducción a la analítica web
  2. Funcionamiento Google Analytics
  3. Instalación y configuración de Google Analytics
  4. Configuración de las vistas mediante filtros
  1. Navegación por Google Analytics
  2. Informes de visión general
  3. informes completos
  4. Compartir informes
  5. Configuración paneles de control y accesos directos
  1. Informes de Audiencia
  2. Informes de Adquisición
  3. Informes de Comportamiento
  1. Campañas personalizadas
  2. Realizar un seguimiento de las campañas con el Creador de URLs
  3. Configuración y medición de objetivos
  4. Cómo medir campañas de Google Ads
  1. ¿Qué es Adobe Analytics?
  2. ¿Qué podemos hacer con Adobe Analytics?
  3. Principales diferencias respecto a Google Analytics
  4. Conceptos Clave
  5. Implementación de Adobe Analytics
  1. Algunas singularidades previas de Adobe Analytics que el analista debe conocer
  2. Dimensiones comunes
  3. Métricas comunes
  4. Segmentación y grupos de informes virtuales
  5. Informes en tiempo real
  6. Los canales de marketing
  7. Importación de informes de Google Analytics a Adobe Analytics
  1. Analysis Workspace y la integración del Ad Hoc Analysis
  2. Proyectos
  3. Componentes
  4. Visualizaciones
  5. Paneles
  6. Curar y compartir proyectos
  7. Attribution IQ
  1. Introducción al Reports & Analytics
  2. Tipos de informes
  3. Personalización de informes
  4. Report Builder
  5. Activity Map

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Con nuestra metodología de aprendizaje online, el alumno comienza su andadura en INESEM Business School a través de un campus virtual diseñado exclusivamente para desarrollar el itinerario formativo con el objetivo de mejorar su perfil profesional. El alumno debe avanzar de manera autónoma a lo largo de las diferentes unidades didácticas así como realizar las actividades y autoevaluaciones correspondientes.La carga de horas de la acción formativa comprende las diferentes actividades que el alumno realiza a lo largo de su itinerario. Las horas de teleformación realizadas en el Campus Virtual se complementan con el trabajo autónomo del alumno, la comunicación con el docente, las actividades y lecturas complementarias y la labor de investigación y creación asociada a los proyectos. Para obtener la titulación el alumno debe aprobar todas la autoevaluaciones y exámenes y visualizar al menos el 75% de los contenidos de la plataforma. El Proyecto Fin de Máster se realiza tras finalizar el contenido teórico-práctico en el Campus. Por último, es necesario notificar la finalización del Máster desde la plataforma para comenzar la expedición del título.

becas

Becas y financiación

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

* Becas no acumulables entre sí.

* Becas aplicables a acciones formativas publicadas en inesem.es

titulación

Título Propio del Instituto Europeo de Estudios Empresariales (INESEM) “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Titulación:
Titulacion de INESEM

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 30 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

claustro

Claustro de profesores:
Rafael
Rafael Marín

Ingeniero técnico en Informática de Sistemas por la UGR. Cuenta con más de 5 años de experiencia y vocación en el ámbito de las tecnologías TIC y la programación de aplicaciones informáticas. Especializado en data science, big data y business intelligence y apasionado por la Inteligencia Artificial. 

Leer más
Susana
Susana Jiménez Ruiz

Graduada en Marketing e Investigación de Mercados por la Universidad de Granada. Especialista en estrategias de posicionamiento de pago (SEM), gestión de campañas publicitarias en redes sociales y email marketing. En la actualidad, ejerce como responsable de Social Media Marketing y estrategias SEM en la consultora Índize.

Leer más
Víctor
Víctor Acosta Gómez

Ingeniero superior en desarrollo de aplicaciones informáticas por la Universidad de Granada. Cuenta con más de 25 años de experiencia en ciberseguridad y desarrollando proyectos de aplicaciones web e industriales de trazabilidad. Tiene amplia experiencia en formación ocupacional y profesional tanto presencial como elearning, colaborando como docentes en varias universidades.

Leer más
Iván
Iván Casado

Licenciado en Derecho. MBA Dublin City University – Cuenta con más de 15 años de experiencia internacional en eCommerce y Marketing Digital en empresas como PayPal y eBay. Actualmente es consultor de pagos online y marketing digital en Paymentlab así como profesor en ICEMD, ESIC, Ecommaster y Plataforma de eCommerce. 

Leer más
Daniel
Daniel Rodriguez

Ingeniero Técnico en Informática de Sistemas, analista programador de aplicaciones web usando la plataforma de desarrollo ASP‎.‎NET con C‎# así también como desarrollo de aplicaciones usando PHP. Experto en bases de datos SQL Server y MySql y conexión con aplicaciónes web mediante ORM como NHibernate y Entity Framework además del uso de  ADO.net.  Actualmente jefe de proyecto en Innoforma Elearning Technologies.

Leer más
TAMBIÉN PODRÍA INTERESARTE...
Otras Acciones Formativas relacionadas
Master Data Science y Análisis de Datos
Online | 1500 H. | 1970 EUR
Curso Superior en Analítica Web en Entornos Big Data
Online | 220 H. | 440 352 EUR
Master en Análisis y Visualización de Datos Masivos
Online | 1500 H. | 1695 EUR
Curso Superior en Big Data
Online | 300 H. | 480 384 EUR

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School